
1

Enabling Resilience through Introspection and
Virtualization

John Paul Walters, Stephen P. Crago, Vijay S. Pai,
Karandeep Singh, Jinwoo Suh, Andrew J. Younge, Kenneth M. Zick

University of Southern California - Information Sciences Institute
Corresponding author: jwalters@isi.edu

Abstract—This paper argues that virtualization coupled with
an introspective run-time can be used to enhance the fault
tolerance of exascale systems while reducing their dependency
on checkpointing. By pairing an introspective run-time with
virtualization, we propose that many failures can be predicted
and other failures detected and mitigated while maintaining
concurrency and without resorting to full checkpointing.

I. INTRODUCTION

Traditionally, HPC system architects have relied on check-
point/restart strategies coupled with sufficiently long mean
times to failure (MTTF) to maintain high utilization at
relatively low overheads. As supercomputers grew in size,
checkpointing evolved to reduce synchronization overhead,
checkpoint storage overhead, etc., but fundamentally has not
changed. Techniques such as message logging [1], incremental
checkpointing [2], local disk checkpoint storage with replica-
tion [3], [4], and dedicated checkpointing backplanes [5] have
brought us into the petascale era, but on their own will not
carry us towards exascale computing as the MTTF begins to
approach zero.

In this paper we argue that virtualization combined with a
highly parallel introspective run-time system are key enablers
for resilient exascale systems. Virtualization offers unprece-
dented access to detailed performance characteristics, system
status, and an infrastructure that decouples system software
(e.g. an OS) from the hardware. With the addition of an
introspective run-time, fault tolerance can be enforced as a
policy of the run-time. This enables the run-time to leverage
an array of fault mitigation strategies based on application
requirements, including preemptive live migration, algorithm-
based fault tolerance, redundancy, etc.

In this paper we specifically target system failures (failures
due to components) and soft errors that result in silent data
corruption (SDC). Of course, resilience is only one component
of future exascale systems, performance is equally important.
This is especially true when applications are virtualized, and
portions of the application may be moved dynamically over
the course of the application’s run-time. We address these
performance challenges in a second position paper [6].

II. CURRENT STATE OF THE ART

As we accept petascale as mainstream, resiliency has re-
cently becoming an increasing challenge. For instance, in [7]
it’s noted that double bit flips occur in 1 of the 100,000
DIMMS in a Cray XT5 at a rate of 1-2 times per day, leading

to a node’s instant reboot and loss of all non-checkpointed
data. Hard disks and cooling fans fail much more frequently.
As we move to exascale and target orders of magnitude larger
resources, these problems (and many others) will likely be
exacerbated. Other work has targeted understanding check-
pointing at scale, and mitigating its effects [3], [4], [8]–[10].
Checkpointing alone, however, is unlikely to scale to the
exascale [11].

III. PROPOSED SOLUTION AND RESEARCH APPROACH

In our vision, resilience is achieved through a policy or set
of policies enforced by the run-time system. The introspective
run-time sits above the virtual machine, and is responsible
for both high level resource management (e.g. mapping vir-
tual machines to nodes) as well as global fault prediction,
detection, and correction. However it does so with extensive
input from virtual machines, applications, and hardware. Ap-
plications are responsible for indicating to the run-time their
fault-tolerance requirements as well as any fault mitigation
techniques the application will employ in parallel with the run-
time. Critically, the fault mitigation techniques may vary over
time or even by node. Different phases of the application may
have different fault tolerance requirements, and heterogeneous
resources may have unique resilience requirements.

Implementing our proposed run-time relies on advances in
3 key areas: realtime system modeling, fault prediction, and
fault detection/correction. Each of these are described in the
sections that follow.

A. Realtime system modeling

Component operating temperature, humidity, load, and age
are all well known causes of hardware failure in today’s super-
computers [12]. When heat thresholds are reached, machines
are powered off. This has the desired effect of reducing heat,
but the undesired effect of reducing availability. Core to our
vision is the ability to produce realtime models of the full
system behavior on a per-node and per VM basis, enabling
the run-time to predict both environmental and application-
based trends. We propose the use of lightweight CFD-like
simulations, enabling the run-time to monitor and predict
environmental conditions within nodes, and to correlate those
predictions with an application’s run-time characteristics (see
also the Mercury simulator described by Heath et al. [13]).

In our approach we sample local environmental conditions
as well as operating load. We also track rack position and



2

location, as well as the data center layout and feed these
inputs to a lightweight simulator. Heat transfer and airflow
are modeled and trends are predicted based on the node’s
current and anticipated workload. This allows the run-time
to make tradeoffs based on the resiliency policy requested
by the application. By leveraging the run-time’s scheduling
component, virtual machines can be live-migrated to cooler
areas of the data center, or cooler areas of the rack. If migration
proves too costly, either in terms of performance or resource
availability, the run-time can reduce resource allocation to the
virtual machine in order to reduce load and bring temperatures
back to within a normal operating envelope.

B. Fault Prediction

Fault prediction has been the topic of a great deal of research
since the widespread adoption of virtualization [14]. An ac-
curate fault predictor can preemptively migrate computations
(e.g. live migrate) to healthy nodes before a fault manifests,
and with the help of virtualization, this can be done in a way
that is almost totally transparent to the application. The main
challenge, however, is accuracy: monitoring CPU temperature,
disk SMART status, etc. provides only a partial picture of the
overall system health, and only allows very coarse responses
(e.g. machine shutdowns).

We propose an integrated approach, leveraging the envi-
ronmental model described above as well as hardware hooks
(e.g. parity errors, error probabilities described below, etc.)
to predict node failure based on current and option system
states, enabling the run-time to model solutions before their
implementation. This would allow the run-time to predict the
thermal effect and performance impact of live migrating a VM
to a cooler part of the data center.

More powerfully, by combining the system model with
hardware inputs, future hardware failures can be predicted
based both on historical data (e.g. earlier application runs)
prior to adversely impacting the application. Parity errors
can be monitored for likely imminent failure, and individual
cores can report error conditions. Because the run-time is
architecture-aware, it is also capable of aggregating failure
preconditions from heterogeneous components.

We propose a reclassification of hardware from either
“good” or “bad” to states of marginal behavior. This is
especially critical for silent data corruption. Every computation
produced by the hardware should have an associated reliability
estimate that can be used or sampled by the run-time to predict
likely core failures or soft errors. How the run-time reacts to an
anticipated failure will depend both on the application policy
in place as well as the overall system health.

C. Fault Detection and correction

Past efforts, particularly in the HPC domain, have assumed
a fail-stop model to fault detection, and checkpoint/rollback
for fault correction. This is typically the case with today’s
MPI applications where a single fault triggers a cascading
failure throughout the entire computation, forcing each process
to rollback to the current checkpoint. At the exascale, we
must extend our fault models to include not only fail-stop
conditions, but performance, marginal hardware faults, and

silent data corruption. We anticipate that addressing these
issues will necessarily extend through every layer of future
exascale systems, including hardware, the application, and
management by the run-time.

How hardware reacts to detected failures will depend on
the policy in place between the application and run-time. If
a computation carries a high probability of failure, it may be
re-executed. Alternatively, some applications may not impose
strict correctness requirements on the hardware, instead imple-
menting application-based fault tolerance. Others may leverage
very low-power cores capable of checking computations, but
too slow to produce them. Yet others may leverage otherwise
unpowered cores (“dark silicon”) and transition computation
to the new core and away from the suspect core.

Regardless of the policy in place, applications cannot be
allowed to push the system to its operating extremes for
long. Virtualization will enable the run-time to seamlessly
disable cores and transition computation without application
knowledge. Similarly, the run-time can remove resources (e.g.
CPU cycles) from the VM if the application is exceeding
tolerable thresholds, or live-migrate the VM.

We also anticipate that applications and application run-
times will evolve through the exascale era. MPI-3 is expected
to include run-through stabilization for traditional fail-stop
errors. For those who desire, this will enable programmers
to implement fault tolerance at the application-level. Other
programming models will exhibit inherent fault tolerance, for
example “big data” MapReduce computations.

Still others will fall back to checkpoint/rollback. We antic-
ipate that the advances described above will help to reduce
checkpointing frequency. Further, by leveraging preemptive
checkpointing [15], and local storage techniques [3], [4]
overhead will reduce further.

IV. ASSESSMENT

• Challenges addressed: Our approach addresses the challenge
of keeping an exascale resilience without sacrificing perfor-
mance in the context of unreliable components.

• Maturity: Our approach has not been implemented for
high-performance computing, but many of the component
technologies, such as virtualization, are maturing quickly,
and others, such as introspective run-time systems, have
been prototyped in research environments.

• Uniqueness: Leveraging policy-based introspection and vir-
tualization allows a paradigm shift compared to existing
HPC resilience strategies.

• Novelty: The combination of virtualization and introspec-
tion for exascale systems is novel and has not been imple-
mented or proposed for exascale systems to our knowledge.

• Applicability: Our approach is widely applicable to DOE
workloads, and ss virtualization becomes more pervasive,
this approach could be leveraged at the petascale to reduce
the overhead of fault tolerance.

• Effort: Initial efforts should focus on lowering the virtual-
ization overhead barrier, constructing the system models for
fault prediction and faults (to include soft errors) at scale.
In the long term, efforts should be made to enable run-time
integration of hardware statistics and system models.



3

REFERENCES

[1] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik, and F. Cappello,
“Improved message logging versus improved coordinated checkpointing
for fault tolerant mpi,” in Cluster Computing, 2004 IEEE International
Conference on, sept. 2004, pp. 115 – 124.

[2] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira,
“Adaptive incremental checkpointing for massively parallel
systems,” in Proceedings of the 18th annual international
conference on Supercomputing, ser. ICS ’04. New York,
NY, USA: ACM, 2004, pp. 277–286. [Online]. Available:
http://doi.acm.org/10.1145/1006209.1006248

[3] J. P. Walters and V. Chaudhary, “Replication-based fault tolerance for
mpi applications,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 20, no. 7, pp. 997 –1010, july 2009.

[4] A. Moody, G. Bronevetsky, K. Mohror, and B. De Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in High Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for. IEEE, 2010, pp.
1–11.

[5] R. Gupta, P. Beckman, B.-H. Park, E. Lusk, P. Hargrove, A. Geist,
D. Panda, A. Lumsdaine, and J. Dongarra, “Cifts: A coordinated
infrastructure for fault-tolerant systems,” in Parallel Processing, 2009.
ICPP ’09. International Conference on, sept. 2009, pp. 237 –245.

[6] V. S. Pai, S. P. Crago, D.-I. Kang, M. Kang, K. Singh, J. Suh, J. P.
Walters, and A. J. Younge, “Virtualized cloud computing for exascale
performance,” Jul. 2012.

[7] D. Fiala, “Detection and correction of silent data corruption for large-
scale high-performance computing,” in Parallel and Distributed Pro-
cessing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, may 2011, pp. 2069 –2072.

[8] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros, K. Pedretti,
T. Kordenbrock, and R. Brightwell, “Increasing fault resiliency in a
message-passing environment,” Sandia National Laboratories, Tech.
Rep. SAND2009-6753, 2009.

[9] R. Gupta, H. G. Naik, and P. H. Beckman, “Understanding checkpointing
overheads on massive-scale systems: Analysis of the ibm blue gene/p
system,” IJHPCA, vol. 25, no. 2, pp. 180–192, 2011.

[10] A. Bouteiller, G. Bosilca, and J. Dongarra, “Redesigning the message
logging model for high performance,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 16, pp. 2196–2211, 2010.

[11] E. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. Godfrey, A. Hoisie,
K. McKinley, R. Melhem, J. Plank, P. Ranganathan et al., “System
resilience at extreme scale,” Defense Advanced Research Project Agency
(DARPA), 2007.

[12] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” Dependable and Secure Computing,
IEEE Transactions on, vol. 7, no. 4, pp. 337–351, 2010.

[13] T. Heath, A. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bianchini,
“Mercury and freon: temperature emulation and management for server
systems,” in ACM SIGARCH Computer Architecture News, vol. 34, no. 5.
ACM, 2006, pp. 106–116.

[14] A. Nagarajan, F. Mueller, C. Engelmann, and S. Scott, “Proactive fault
tolerance for hpc with xen virtualization,” in Proceedings of the 21st
annual international conference on Supercomputing. ACM, 2007, pp.
23–32.

[15] F. Cappello, H. Casanova, and Y. Robert, “Preventive migration vs.
preventive checkpointing for extreme scale supercomputers,” Parallel
Processing Letters, vol. 21, no. 2, pp. 111–132, 2011.

http://doi.acm.org/10.1145/1006209.1006248

	Introduction
	Current State of the Art
	Proposed Solution and Research Approach
	Realtime system modeling
	Fault Prediction
	Fault Detection and correction

	Assessment
	References

